The dynamics of rigid bodies is a fascinating and complicated subject . 剛體動(dòng)力學(xué)是一個(gè)誘人而復(fù)雜的論題。
Coordinate transformation, matrix, vectors, newton's law, conservation theorems, simple harmonic oscillator, non-linear oscillations, gravitation, euler's equation when auxiliany condition are imposed, the delta notation, lagrangian and hamilitonian dynamics, central-force motion, dynamics of a system o f particles, motion of noninertial reference frame, dynamics of rigid body, coupled oscillations, orthogonality of the eigenvectors, continuous system 座標(biāo)變換、矩陣、向量、牛頓定律、守恒定律、簡諧振動(dòng)、非線性振動(dòng)、引力、尤拉式方程式及附加條件、符號(hào)、拉格蘭及漢米爾頓力學(xué)、中心運(yùn)動(dòng)、多粒子系統(tǒng)動(dòng)力學(xué)、非慣性參考座標(biāo)運(yùn)動(dòng)、剛體動(dòng)力學(xué)、耦會(huì)振動(dòng)、本微向量正交性、連續(xù)系統(tǒng)。
Matrices, vector and vector calculus, newtonian mechanics-single particle, oscillations, nonlinear oscillations and chaos, gravitation, some methods in the calculus of variations, hamilton's principles lagrangian and hamiltonian dynamics, central-force motion, dynamics of a system of particles, motion in a noninertia reference frame, dynamics of rigid body 矩陣和向量的計(jì)算、單一質(zhì)點(diǎn)的牛頓力學(xué)、線性與非線性的振動(dòng)運(yùn)動(dòng)、重力、微積分上的變分法介紹、哈密頓原理、拉氏及哈氏力學(xué)、連心力下的運(yùn)動(dòng)、質(zhì)點(diǎn)系的運(yùn)動(dòng)力學(xué)、在非慣性座標(biāo)中的運(yùn)動(dòng)、剛體的運(yùn)動(dòng)。